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Excitation of internal waves in a stably-stratified 
atmosphere with considerable wind-shear 
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(Received 6 January 1967 and in revised form 6 October 1967) 

The rate of generation of internal waves by a thin turbulent boundary layer was 
calculated in a previous paper for a stably-stratified atmosphere with no signifi- 
cant wind-shear outside the boundary layer by considering the excitation of 
normal modes of wave propagation. By using the concept of wave-packets pro- 
pagating upwards from the boundary layer, the effects of wind-shear can be 
included. Conditions for the validity of the approximation are given. In  general, 
the spectral distribution of wave-energy at a particular height takes large values 
in two bands of horizontal wave-number, one band deriving from wave-packets 
undergoing internal reflexion near that height and the other from wave-packets 
of very small local frequency that accumulate there. The ‘reflexion’ wave- 
numbers are dominant if the wind increases with height and the ‘ accumulation ’ 
wave-numbers if the wind initially decreases with height. The spectral energy 
distributions and intensities of the wave-motion are discussed in more detail 
for an atmosphere of uniform stability and unidirectional wind-shear. The 
accumulation process may lead to instability or overturning of the waves, and 
estimates are made of the probable scale and intensity of the ‘ clear-air ’ turbu- 
lence produced. An interesting point is that the rate of energy loss from the 
boundary layer by radiation of internal waves turns out to be comparable with 
the rate of production in the outer nine-tenths of the layer, both for atmospheric 
boundary layers and for the surface layer of the ocean. It seems likely that radia- 
tion limits the layer thickness to  some extent. 

1. Introduction 

Over most of its depth, the earth’s atmosphere is stably stratified and a parcel 
of air displaced vertically experiences a buoyancy force tending to restore it to 
its original level. One consequence is that internal gravity waves may propagate 
in it and transfer energy from one part of the atmosphere to another, a well- 
known example being the lee-waves produced by surface irregularities. Lee- 
waves are analogous to the bow-wave of a ship moving through water and are 
stationary with respect to time in a system moving with the obstacle that causes 
them. Here we are concerned with internal waves produced by moving sources, 
situated in a turbulent layer, waves which are analogous with the surface waves 
on water induced by the travelling pressure fluctuations under a turbulent 
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boundary layer. Although the calculations and conclusions may be relevant to 
the generation of internal wavesin the ocean or the upper atmosphere, the empha- 
sis is on waves in the troposphere produced by the travelling disturbances in the 
earth’s boundary layer and an object has been to discover the circumstances in 
which internal waves of this kind could give rise to travelling wave-clouds or to 
clear-air turbulence. 

The problem has been simplified by assuming the atmosphere to be horizont- 
ally homogeneous and time-independent in its basic wind and temperature 
structure. I n  the real atmosphere, changes are frequent and the results can apply 
only for intervals over which the changes are comparatively small. Initially, the 
atmosphere is assumed to be free from internal waves but waves are induced by 
the boundary layer, represented by a travelling pattern of transient displace- 
ments at  a particular level. The displacements are caused by vertical motions of 
the boundary layer and it is probable that the convection velocity of the pattern 
is nearly the wind velocity near the centre of the layer, say four-fifths of the wind 
at the top of the layer. With a knowledge of the power spectrum of the displace- 
ments, it is possible in principle to calculate the expected intensity and spectral 
distribution of the internal waves at any time, and the results should approxi- 
mate to the added wave-motion in a real atmosphere that has changed little in 
the elapsed time. 

In  a recent paper (Townsend 1966), approximate expressions for the growth of 
internal gravity waves were derived for a stably-stratified atmosphere initially 
at  rest, but the validity of the method depended on negligible variation of wind- 
velocity outside the boundary layer, a condition that is not particularly common 
in the real atmosphere. By using the wave-packet approximation, recently dis- 
cussed by Lighthill (1965) and by Bretherton (1966), the limitation to negligible 
wind-shear can be avoided. The approximation considers the internal waves as 
an assembly of wave-packets of limited spatial extent which are radiated by the 
boundary layer, each propagating in fluid which is essentially uniform. By using 
refraction and energy conservation relations, trajectories and changes in energy 
and scale can be found and then the wave-motion at any height depends on the 
local characteristics and number-density of the wave-packets so far radiated. In  
the present context, the approximation is a good one if the scales of the imposed 
disturbances are small compared with the depth of the atmosphere, if the elapsed 
time is long compared with the Vaisala-Brunt frequency, and if the Richardson 
number is not small. 

2. Waves generated by a travelling surface displacement 
It is convenient to describe the motion with reference to a Cartesian co- 

ordinate system moving with the wind velocity just outside the boundary layer. 
x measures height above the boundary layer and the horizontal Ox axis is in the 
opposite direction to V, the average convection velocity of the travelling dis- 
turbances relative to the co-ordinate system. The reason for the choice of Ox is 
that it allows positive vertical gradients of the horizontal wind component in the 
Ox direction to correspond with an increase with height of wind relative to the 
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ground. The relevant properties of the undisturbed atmosphere are specified by 
the vertical distribution of the horizontal wind vector U(z), and the vertical 
distribution of the characteristic, Vaisala-Brunt frequency 

By definition, U(0) = 0. 
Any surface disturbance may be analysed into travelling sinusoidal disturb- 

ances with vertical (complex) displacements of the form,? 

6 = a,(t)expi(k.r-k.Vt), 

where ao(t) is the complex amplitude, k is a two-dimensional wave-number vector 
with components I ,  m in the Ox, Oy directions, and r = (x,y) is the horizontal 
position vector. The convection velocity should be chosen so that the time varia- 
tion of ao(t) is as small as possible for all realizations of the flow, and it may be a 
function of k. It is assumed here that the convection velocity is the same for all 
relevant wave-numbers. Then k .  V is the wave-frequency in the co-ordinate 
system and w(z)  = k .  (V - U) is the local wave-frequency as measured moving 
with the fluid at  height z. For small vertical displacements, the system is linear 
and the basic problem is to find the wave-motion induced by a travelling sinu- 
soidal disturbance in the given atmosphere. In  the Boussinesq approximation, 
it may be shown from the inviscid equations of motion that travelling internal 
waves of small vertical displacement, 

[ =  $(z)expi(k.r-k.Vt), 

are possible if $(z)  satisfies 

and the proper boundary conditions. Equation (2.1) is identical in content with 
the Orr-Sommerfeld equation for a stably-stratified fluid. 

If the Richardson number, w2,(dU/dz)-2, is not small and if w/wl does not vary 
greatly over height inbervals of wk-l(w2, - u2)-*, an approximate solution of 
(2.1) may be found by using the W.K.B. approximation. It is 

$(z )  = [w(w2,--~2)]-*expik (w2,/wz- 1)*dz. ( 2 . 2 )  s 
Locally, the solution represents a transverse wave with wave-normals inclined 
to the horizontal at  an angle of 4 = c0s-l w]wl if lwl < wl. It follows that a wave- 
packet of dimensions small compared with the scale of vertical inhomogeneity 
moves in a direction inclined to the horizontal by 4 - Qn with group-velocity, 

(2-3) G = (w, /k)  sin q5 cos q5 = ( w / k )  sin 4. 
t Here and elsewhere, the physical displacements are the real parts of the complex 

displacements that appear in the equations. 
10-2 
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The wave-motion emitted by the surface may be regarded as an assembly of 
wave-packets of horizontal wave-number k and local frequency k .  (V - U), 
and should fill the space below a front which propagates vertically upwards with 
the local value of G cos q5, at least until reflexion occurs. Near the surface, the wave 
amplitude is expected to be that of the surface disturbance and the upward flux 
of energy should depend only on conditions within the region of induced 'poten- 
tial flow. 

To confirm the expected wave amplitude and to explore the approximation 
of a, sharp wave-front, the method of the previous paper may be used to find 
the wave-motion produced in a uniformly-stratified, shear-free atmosphere of 
height H. 'Equation (2.4)' from Townsend (1965) may be written 

(2.4) 

where C(z, t )  is the current amplitude. $,(z) is the vertical distribution function 
for the sth free mode, which satisfies (2.1) and the boundary conditions, 

C(z, t )  = a, exp ( - kz)  exp (ik . Vt) + xu ,  $,(z) [exp ( - ioJ) - exp (ik . Vt)], 
8 

(2.5) 

$ ( O )  = = 0, 

i.e. $,(z) = sin ( snz /H)  

and W, = ~ , 7 c H ( k ~ H ~  + s2n2)-*. 

From 'equation (2.5)' of the same paper, 

a, - 2ns 0," 

a, w2,k2H2 ~ , 2 - ( k . V ) ~  
and, omitting the term a, exp ( - kz)  exp (ik. Vt) which represents irrotational 
flow, 

[exp { - i t(w, - k .  V)> - 11. 

(2.7) 

2na, SW," 
exp( - i k . V t ) x  C(z7t)  = W2,3C2H2 , u,2- (k.V)2 

The magnitude of the sum depends mostly on its largest terms, those for which 
(0, - k. V) t is small. If both w,t and k . Vt are large, the relation (2.5) between w, 
and s can be approximated by 

where 

Using the approximation and replacing ws by k . V except in factors involving their 
difference, we find 

a, C(z, t )  = -exp( 
7T 

where 01 = ( k . V ) 2 W , 2 [ W 2 , -  (k.V)2]*nt(kH)-1. 
All the approximations are valid if the factor [exp ( - iar) - l]/r becomes small 
for values of r less than so, i.e. if 

is large, a condition usually satisfied for large values of k . Vt. 
 CIS^ = k.Vt(W2,-(k.V)2)wi2 
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The expression for 6 is the sum of two parts, 

Within the interval, - n  < x < n, 

O0 sinrh 
cosrx = in if 1x1 < h, 

? = n  =r 

and so cl and c2 have the non-zero values, 

-k.Vt for 0 > z > 
(2.11) 

aH 
-k.Vt for 0 < z < -. 

n 

1 
1 

The period in z is 2H and the radiated waves, Q and &,, spread respectively down 
and up from the levels, z = 2 2nH, making their appearance in the physical 
atmosphere at  the appropriate times as reflected waves. The vertical velocity of 
the wave-boundaries is 

= wF2k-1(k.V)2[u;-(k.V)2]* = Gcosq5. (2.12) 
nt 

For times less than H/(Gcos$), the Cl wave does not appear in the region 
0 < z < H and the approximate solution is 

<=  aoexpi(-Lztanq5-k.Vt) for z < Gtcosq5, 
= o  for z > Gt cos q5. 

Sharp definition of the wave-front exists only if both so and aso are very large. 
The interpretation is that the front is not defined to better than the 'vertical' 
wavelength, H/(ns,) = L-lk. V(wq - (k . V2)d), which must be small compared 
with H and with the distance travelled. Equation (2.11) shows that the wave- 
amplitude just outside the boundary layer is the same as the amplitude of the 
surface displacement and, since the energy density of the wave-motion is w:{[*, 
the power radiated from the surface per unit area is uqCC*G cos q5. If Fo(k) is the 
power-spectrum of the surface displacements, the power radiated is 

W = W; Fo(k) G(k) cos 4dk. s (2.13) 

Assuming the convection velocity to be the same for all wave-numbers, which is a 
reasonable approximation for the larger scale components of the boundary- 
layer motion, the power radiated is 

W = k-l(k.V)2[w:- (k.V)2]*Fo(k)dk. (2.14) f 
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If the variations of wind and characteristic frequency are small within a layer of 
depth comparable with the scale of the displacements, the power radiated will 
be essentially the same as in the constant-stability, shear-free atmosphere. In  
an atmosphere with stability and wind varying with height, the amplitude of the 
wave-motion varies as o-*(w:- 02)-* to the approximation of (2.2). The varia- 
tion reflects the changes of group velocity with height and the interaction between 
the wave-motion and the wind-shear. Without approximation, a travelling wave 
$(z) exp i(k . r - k . V t )  has a local energy density of i w ;  $$*, an upward flux of 

(2.15) -_ energy of PW = $k-2~3i($'$* - p"$) 
and a 'Reynolds stress' of 

;k+di($I.'$.+ - $ I . ' " $ ) .  (2.16) 
_- -uw= -- 

Conservation of energy requires that 

d p i j  --au -- - -uw- 
dz dx 

and substituting from equations (2.15, l 6 ) ,  we find 

i($'$* - $ I * $ )  cc w-2. (2.17) 

The same result may be obtained directly from equation (2.1). In  the absence of 
reflexion, the upward flux of energy is proportional to the local frequency and the 
momentum flux is independent of height. If  the direct and the various reflected 
waves are considered separately, the conclusions apply to the individual waves 
and the amplitudes vary as w-*(wt - w2)-). 

3. Spectral distribution of wave-amplitudes 
Energy in the form of internal waves is radiated by Fourier components of 

the surface displacement such that k.V is less than wo, the characteristic fre- 
quency just outside the boundary layer. For each Fourier component, a wave- 
front leaves the surface and propagates upwards at the local velocity Gcosg5. 
Behind the front, the vertical amplitude is related to the surface amplitude by 

aa*k. (V - U) [OJ; - (k . (V - U))']* = "0 (k . V) [o$ - (k . V)2]*, (3.1) 

where a(k) is the vertical amplitude at the height where the wind-speed is U 
and the characteristic frequency is wl. To the wave-packet approximation, the 
amplitude becomes infinite where k .  (V - U) = o becomes either zero or equal 
to the local characteristic frequency, and the vertical component of the group 
velocity is zero. Both cases are of special interest and it is worth considering in 
detail the behaviour of the wave-motion. 

First, if w/wl exceeds one above a particular height zo, equation (2.1) indicates 
an exponential variation of $(z), typical of complete internal reflexion of the 
incident waves. If the variations of wind and density gradient are such that 

k2( 1 -@/oz) = A3(z - x 0 ) ,  

$ ( z )  = a-l Ai [ - A(z - x O ) ] ,  

then a solution of (2.1) for negligible U" is 
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where Ai(x) is an Airy integral with the asymptotic behaviour, 

Ai(x) N ~-4x-i sin (%(x)a + &r) for large positive x, 

N &r-*x-* exp ( - $( - x)*) for large negative x. 

Direction of group velocity, / V/sin@ 

- -- - - - - 
ection of phase velocity, Vlcos 6 

Surface disturbance 
elocity I' 
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Ground 

f 
H/ 

Ground 
FIGURE 1. Propagation of internal waves in a stably stratified atmosphere. (a) Wave- 
propagation from a suddenly initiated sinusoidal disturbance at the ground. The parallel 
lines indicate the particle displacements. ( b )  Reflexion of a wave-packet at a level where 
w = ol. (N.B. The indicated trajectory is a line parallel to direction of travel relative to 
the local fluid.) (c) Motion of a wave-packet approaching an accumulation level where 
its local frequency would be zero. (N.B. The wave-surfaces are diagrammatic and their 
separations are arbitrary.) 

The solution represents a standing-wave pattern produced by waves undergoing 
reflexion near z = zo, and the amplitudes are those given by (3.1) for xo-z  
greater than A-l. The amplitude becomes very small for z - zo greater than A-1 

and the wave-packet description (which gives the intensity according to (3.1) 
for z less than zo and zero intensity for z greater than zo) is satisfactory if details 
on the scale of A-l are ignored. From the definition of A, 
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and, for vertical gradients of wind comparablewith wl, the scale A-l is comparable 
with the horizontal wavelength k-l. The reflexion is total and the reflected wave 
has the same amplitude as the incident wave at each level. Another feature of 
propagation near a level where w = w1 is that the group velocity is proportional 
to the square-root of distance from the level, and the process of reflexion of a 
wave-packet takes only a finite time. In  general, waves are reflected at the level 
where their local frequency becomes equal to the characteristic frequency, wl. 

The other case of apparently infinite amplitude occurs if the local frequency 
becomes zero. Then the vertical wave-number is very large near the critical level 
and the wave-packet approximation should remain good, with the wave-front 
definable within a distance small compared with distance from the critical level. 
In  contrast with the case of reflexion, the vertical group velocity varies as the 
square of distance from the level and the wave-front takes an infinite time to  
reach it. Moreover, the energy flux behind the wave-front is proportional to the 
local frequency, i.e. to distance from the critical level, and it seems certain that 
the waves cannot penetrate the level of zero local frequency in the approxima- 
tion (see, however, Booker & Bretherton 1967). Where the waves have pene- 
trated, the energy-density is nearly proportional to k .  (V - U) by equation (3.1) 
and wave-energy accumulates even though most of that radiated from the sur- 
face is lost by working against the gradient of horizontal velocity. 

At any level, the spectrum of wave-energy is likely to be dominated by com- 
ponents undergoing reJEexion or accumulation in neighbouring levels. In  the wave- 
number plane, wave-numbers satisfying the reflexion condition, 

w = k.(V- U) = wl, 

lie on a line perpendicular to U - V, (the wind relative to the convection velocity), 
and distant wl/IV - UI from the origin.? Wave-numbers satisfying the accumula- 
tion condition, w = 0, lie on a line perpendicular to the relative wind and through 
the origin. In  general, wave-energy is confined to Fourier components which have 
not satisfied either the condition for reflexion or that for accumulation at  any 
lower level, i.e. not lying within the areas swept out by the two lines as the height 
increases, and it is most intense for components near the two lines. 

Consider an atmosphere of uniform stability with the wind-vector U in the 
same direction at all heights and increasing steadily. Then the reflexion lines, 
k .  (V - U) = wl, all pass through the wave-number (wl/ V ,  - ( o J V )  cot 6 )  where 
S is the angle between V and - U. Figures 2 and 3 show the positions of the re- 
flexion and accumulation lines for various heights: (i) for wind increasing with 
height (U . V negative) and (ii) for wind initially decreasing with height (U . V 
positive). All the energy radiated by the surface disturbance is in wave-numbers 
such that k . V  < wl, and the spectrum at any height is confined to the wave- 
numbers in the parallelogram bounded by the lines, 1 = 0 and wl/ V ,  and by the 
accumulation and reflexion lines, k .  (V- U) = 0 and wl. Radiated energy out- 
side the area has been removed by the processes of accumulation and reflexion. 
The intensities of Fourier components with wave-numbers near the reflexion 

t Since a power spectrum must be an even function of k, only the half-plane for 
k . V > 0 will be considered. 
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and accumulation lines are large, and the local wave-spectrum will be dominated 
by these components. If U . V is negative, only the reflexion line passes through 
the wave-numbers of comparatively small k and moderate k . V/o, which are 
radiated most efficiently, and the centroid of the reflected wave-numbers is 
roughly in the wind-direction. The wave-crests then lie across the wind unless 

m 

'\ Direction of U 
\ 
\ 

&!-[ \ 

\ 

I =oJv 
FIGURE 2 FIGURE 3 

FIGURE 2. The horizontal wave-number plane, showing reflexion and accumulation lines 
for constant w1 and U.V < 0 (6 > ~ 1 2 ) .  

FIGURE 3. The horizontal wave-number plane, showing reflexion and accumulation lines 
for constant o1 and U . V  > 0 (in < S < n). 

I Ul $ IVl . If U . V is positive, the accumulation line passes through the important 
wave-numbers and the centroid is at right angles to the relative wind. Then the 
wave-crestslie along the wind-direction. In  both cases, if 1 Ul $ IVI , the parallelo- 
gram shrinks to a slit perpendicular to the wind direction but then the wave- 
energy is usually very small. 

The discussion can be modified fairly easily if stability and wind vary in other 
ways. Reflexion and accumulation lines may be drawn to show the concentra- 
tions of wave-energy, but the possibility exists that the relevant Fourier com- 
ponents may have been stopped at  lower levels. 

4. Atmosphere with uniform wind-shear : reflected waves 

gradient and with uniform vertical gradient of wind, i.e. for which 
Now consider the waves generated in an atmosphere with uniform density 

w1 = constant, U = pz. 

The waves radiated by Fourier components of horizontal wave-number k 
undergo reflexion at  a height, wl-k.V 

2, = 
-k.@ ' 
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which is positive only if k .p < 0. Waves for which k .p > 0 may accumulate near 
the level, z ,  = k .  V/(k .p) but are not reflected at any height. It is useful to con- 
sider separately the contributions to the wave-intensity from the two groups of 
wave-numbers. 

Reflexion of the wave from a single Fourier component of the surface displace- 
ment will produce an interference pattern, extending downwards for a distance 
dependent on the coherence time of the emitted wave, but the separation of the 
maxima and minima is on too small a scale to be relevant to excitation by a con- 
tinuous spectrum of displacement. So the effects of interference can be ignored 
and the total wave-intensity at a point obtained by summing the intensities of 
the initial wave and all the reflected waves that are passing at  the time. At t = 0, 
waves begin to move upwards, each with the group velocity appropriate to its 
wave-number, G cos q5 given by equation (2.3), and the time necessary to reach 
a height x less than the reflexion height, x, = (wl - IF')/( - k .p), is 

The time to reach the reflexion height is 

After reflexion, the wave travels down with the same velocity at  each height as 
the upgoing wave, is reflected by the surface a t  time St,, and so on. It follows that 
the intensity at  a height x less than x, is 0 for t less than t(x, k), 

(aa*) for t ( x ,  k) < t < 2t,-t(z, k), 
2(aa*) for 2t,-t(z, k) < t < 2t,+t(x, k), 
3(aa*) for 2t,+t(x, k) < t < 3t,- t ( z ,  k), 

and so on, where ZV(w?- Z2V2)6 
(.a*) = (ZV - p . kz) [w!- (ZV- p . kz) 2 ] &oa3 

is the average intensity of the initial wave at  height x .  The discontinuous varia- 
tion of intensity with time is inconvenient, but it may be approximated by the 
linear variation, (aa*) t/t,, for large values of tit,. 

Using the approximation of linear growth, the power spectrum of the wave 
displacements at  height z due to reflexion components (k .p < 0 )  is 

- k.PtZ2V2 
P(k; Z,  t )  = I c ( Z V - ~ . k x ) [ w ~ - ( Z V - ~ . k x ) 2 ] *  FOW (4.4) 

and, knowing the power spectrum of the surface displacements, the wave-in- 
tensity is found by integrating over the triangular 'reflexion area' bounded 
by the lines, Z = 0, k .P  = 0 and ZV- k.px = wl. The form of the weighting 
factor implies that &he dominant contributions are from wave-numbers near the 
reflexion line and that no large error arises if integration with respect t o  wave- 
number component in the direction of V - U is between 0 and wl/ I V - U] and if 
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quantities other than [w: - (1 V - p.  k ~ ) ~ ] *  are replaced by their values on the 
reflexion line. Naturally, it is necessary that Fo(k) should be slowly varying near 
the reflexion line. Then, 

(u )  Wind increasing with height 

- - - _- -23 
Approximate direction -V 

(b)  Wind decreasing initially with height af low-level geostrophic 
wind relative to ground (1. < 6 < f n) 

-- 
-V 

FIGURE 4. Vector diagrams for relative velocity with wind-shear. 

where 6 is the angle between V and - p, B is the angle between V and V - U 
(figure 4), and k and l have the values on the reflexion line, i.e. 

k = (I, m) = k,(cos E - x sin E ,  sin E + x cos E ) ,  

where k, = wl/IV-U]. The variable x is the component of wave-number per- 
pendicular to V - U made non-dimensional with the scale wI/ I V - UI . 

Outside a turbulent boundary layer in a neutrally stratified flow, the irrota- 
tional motion is known to be nearly statistically axisymmetric about directions 
normal to the surface, and it is probable that the power spectrum of the dis- 
placement velocities is isotropic in its two dimensions. Then it has the form, 

f(k) = k2$o(k), (4.6) 

f(k) = [(k vj2 7c2]]Fo(k), (4.7) 

and it is related to the power spectrum of the surface displacements by 

Substituting in (4.5), the expected wave-intensity is 

The dependence of wave-intensity on the motion in the boundary layer will be 
explored using the special form, 

which describes motion with a root-mean-square velocity of w,, and an integral 
scale of Lo, and assuming the auto-correlation time scale 7, to be the same for all 
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wave-numbers. With this particular form for q50(k), the wave-intensity as a 
multiple of PtLg wg/ V2 is 

i.e. a function of the non-dimensional height parameter, Pz/ V ,  and of the non- 
dimensional quantities, wlLo/ V ,  6 and wlrl .  The magnitude of the wave-inten- 
sity can be estimated by considering some limiting cases. It will be assumed that 
wlLo/ V and wlrl  are neither very large nor very small. 

Consider the integral of (4.10) for large values of 

w1 Lo/( V sin E )  = w1 Lo/ V - Pzl / (Pz V sin 6), 

a condition which may be satisfied if either sin 6 or P z /  V is small. If 6 - E < &r, 
the range of integration includes x = 0 but only positive values of x if 6 - E > in. 
In  both cases, the variation of the exponential factor ensures that significant 
contributions to the integral are confined to a range of x of extent comparable 
with IV-f3zJ/(wlLo). Since 

I = -  O1 (cos e - x sin €1, 
IV- Pzl 

its corresponding variation is comparable with sin €/Lo and the variation of the 
factor PV%?/( 1 + PV2r:) is small if w1 Lo/( Vsin E )  is large. Then the integral may 
be evaluated setting the factor equal to its value for the significant range of x, 
i.e. if 6- B < in, to itsvalue for x = 0,w:r; cos2e/( 1 + w:r: c o s 2 ~ ) ,  and, if 6- E > &, 
to its value for x = - cot (6- E ) ,  w $ ~ ; / (  1 + w : ~ ? ) .  Then, 

w:r: V2 cos2 E cot E 

~~~ 

(F) V 2  16 wyLf V3 sin 6 -=-- 
/!?twfL$ 772 IV-pZ15 ~ v - ~ z ~ 2 + w : T ; V ~ c O s 2 €  

x [cot (6- E )  + x] exp dx. (4.11) 

Since 

and 

cot (6 - E )  = cot 6 + Pz/(  V sin 6) 
cote = cot6+ V/(Pzsin6), 

the range of integration is effectively infinite if 6 is small and 

where C = 1 if V+Pz > &Lo, 
C = 2wlLo/(V+j3z) if V+Pz < &w1L0.t 

Roughly the wave-intensity falls off with height as ( V + pz)". 
t Use has been made of the approximation that 

(1 +x+ exp ( -  taax2) dz = 2a-2 for a < (2/.rr)3 

= (2m)$aa-1 for a > (2/n)3, 
Km 

which has a maximum error of about 20 yo. 
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If sin 6 is not small, the wave-intensity for small values of the non-dimensional 
height, PxlV, is given by 

4 w2 L2 
(4.13) 

Figure 5 shows in non-dimensional form the variations of low-level intensity for 
several values of w1 Lo/ V as a function of 6, the angle between the convection velo- 
city and the direction of wind-shear. They have been calculated from (4.13), 

s 

FIGURE 5 .  Relative variation of reflexion wave-intensity with 6 for small values of /j’z/V, 
and for several values of a = (8/n)*w,Lo/V. The absolute values for S = 0 are: 

a =  $ ; f 1 2  

(C2 ) v2 
ptw: L; 

Qn[1+ ( ( J ~ T ~ ) - ~ ]  - = 2.00 1.98 1.77 0.68 

using the approximation that (1 +x2)*  = 1 if IzI < 1, and (1 +x2)4  = I X I  if 
1x1 > 1. Maximum intensity occurs for 6 = 0 if wlLo/V is large, and near 6 = 

if w1 Lo/ V is small. 
For very large values of Pz/V, 6-e is small and equation (4.10) reduces to 

If the factor w;r;a2/(  1 + w;r;u2) is replaced by [l - exp ( - w:~:u2)3,  the integral 
can be expressed in terms of the error integral and figure 6 shows the variation 
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with 6 for two values of up1. Zero intensity occurs both for 6 = 0 and for 6 = T. 

The result is not inconsistent with (4.12) which shows (c2) to vary as ( ~ z / V ) - ~  at 
large heights. 

(a) 0 1  71 = 2 c 
0.2 

ru 

0 
0" 20" 40" 60" 80" 90" 

s 
180" 160" 140" 120" 100" 

0 
60" 80" 90" 0" 20" 40" 

180" 160" 140" 120" 100" 

FIGVRE 6. Variation of reflexion wave-intensity with 8 for large values of /lz/V, and for 
several values of a = (S/7r)*01Lo/V. The ordinate is the value of 

(see equation (4.14)). (N.R. For large Pz/V,  the reflexion intensities for S and r-8 are 
equal.) 
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5. Atmosphere with uniform wind-shear : accumulated waves 
Components for which p . k is positive are not reflected but accumulate near 

levels where their local frequencies would become zero. The time taken by the 
wave-front of a Fourier component of wave-number k to reach a height z is 

and becomes infinite at the accumulation level, z ,  = ZV/(p. k). The component 
of wave-number perpendicular to the accumulation line is 

m' = (ZV-p.kz)/lV-f3zl, 
and, for large values of Pt, very nearly 

It follows that only those components with wave-numbers such that m' > m, 
can reach the height z in time t ,  where 

To the wave-packet approximation, the components that are present have in- 
tensities that are independent of time and given by (3.1), and so the rate of in- 
crease of wave-intensity by accumulation is 

Here I' is the component of wave-number along the accumulation line and the 
integration is along the boundary, m' = m,. The boundary is very close to the 
accumulation line for large Pt, and then 

the integration now being along the accumulation line. Substituting the iso- 
tropic form for the velocity spectrum function, and with a change of variable to 
u = Z'V sine/q = ZIq,  

showing that the intensity increases nearly as logpt. 

integral can be expressed in terms of the tabulated function 
Approximating the function w:r;u2/(1 + w : ~ : u ~ )  by (1 -exp ( - w ~ , T : u ~ ) ) ,  the 

exp x2 dx. j: 
Figure 7 shows the intensity factor, P(a), defined so that 
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for three values of wlrl, 1 , 2  and co. For the interesting case of small n-- 6, large 
rates of accumulation are confined to values of sins between 5w1L0/V and 
0-5w1L0/V with Pz/V nearly one.? 

w1 rl = 00 (approaches 1.00 for large a) L=2 
0 1 2 3 4 5 6 

a 

FIGURE 7. Variation of accumulation wave-intensity, expressed in terms of the function 
P(a) defined in (5.6). 

Near an accumulation level, the vertical component of wave-number for the 
packet becomes very large and it is expected that the mean square of the vertical 
gradient of displacement, a</az, will increase with time more rapidly than the 
mean-square displacement. Large values of the vertical gradient are favourable 
to the development of instabilities in the fluid and it is useful to have an estimate 
of the rate of growth. The power spectrum of a y a z  is obtained by multiplying 
the power spectrum of the displacement by (k tan q5)2, where 

cos $ = W / W ~  = (EV - p.  kz)/wl. 

Using the same argument as before, the rate of increase of the mean-square 

gradient is 

and substituting the isotropic form for the spectrum function leads to 

(5.7) 

sin2(&-€) w2r2u2 
sin5e 6 1 + w 1 r 1 u  ," , ~ 3 ( 1 - ~ 2 ) +  s 

xexp[-!=]du. 71- V 2  sin2 e (5.8) 

t For small @ / V ,  a w (2/d') [ w l L o / ( / h  sin S)] and P(a) is exponentially small for large 
values of a. The accumulation rate is so very small in spite of the factor V/ (pz  sin 8) in 
equation (5.6). 
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With the same approximation for wtriu2/(l + w t 7 t u 2 ) ,  the integral can be evalu- 
ated in terms of rt 

J oexp x2dx, 

and figure 8 shows the intensity factor &(a), defined so that 

for the same three values of wlrl.  The rate of increase is large in conditions where 
the increase of wave-intensity is large, but the mean-square gradient increases 
as the square of the time. 

o1 71 = m (approaches $ for large a)  I 

0 1 2 3 4 5 6 
a 

FIGURE 8. Variation of vertical gradients of wave displacement, expressed in terms of the 
function &(a) defined in (5.9). 

6. Production of turbulence by the accumulation process 
If the amplitude of the internal waves is large, the simple linear theory is in- 

adequate and any of a number of non-linear effects may occur. Some of these are 
conservative of energy, transferring it from one wave-number to another, but 
some resemble hydrodynamic instabilities and may grow and develop into dis- 
sipative turbulent motion. With internal waves of large amplitude, two kinds of 
instability appear to be possible: (i) convective instability developing in regions 
where wave-displacements have reversed the vertical gradient of density. The 
condition for reversal is that 

- <  -1 .  ac 
az 

(ii) Shear instability developing in regions of high rate of shear. For a sinu- 
soidal internal wave, maximum velocity gradient coincides with zero displace- 
ment and the stability criterion depends on the velocity gradient of the waves 

11 Fluid Mech. 32 
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and on the undisturbed density gradient of the atmosphere. For inclined flow, 
the energy argument used in the 'just no turbulence ' criterion of L. F. Richard- 
son would show that the flow becomes unstable if the Richardson number formed 
from components of gravity and density gradient in the direction of velocity 
shear is less than a critical value, i.e. 

In  either case, turbulence is unlikely to develop unless the unstable configuration 
persists for times long compared with characteristic times of the flow. 

An internal wave component of horizontal wave-number X: has its wave- 
normal inclined t o  the horizontal at  an angle 6' = cos-lw/wl. If a is the amplitude 
of vertical displacement and w is the local frequency, the velocity amplitude 
a t  right angles to the wave-normal is wa/cosO = wla ,  and, since the three- 
dimensional wave-number is klcos 8, the amplitude of the velocity gradient is 
kw2,alw. The components of gravity and density gradient along the wave-normal 
are g sin 8 and dp/dz sin 0, so that the Richardson number formed from the un- 
disturbed density gradient and the rate of shear in the wave is 

w2( w! - w2) 

k2wfaa* 
Ri(k) = - - - ~ .  

An effective Richardson number for the whole spectrum of waves is then 

Since the vertical component of wave-number is k(w2, - w2)* /w,  the power spec- 
trum of a</& is 

and the effective Richardson number may be expressed as 

P(k) = k ' (~2 ,  - ~ ~ ) ) i w ~ F ( k )  

P( k) d k] -'. (w2, - w2)2 
Ri = [ 

Large values of a(Jax are likely to arise only through accumulation of components 
whose local frequencies are small compared with w l ,  and the effective Richardson 

The condition for shear instability of the wave system is nearly the same in form 
as the condition for convective instability, and it is possible that both forms of 
instability occur together. Since the conditions are likely t o  be met only by the 
accumulation process, the duration of locally unstable conditions, of order w-l, 
is long compared with w ~ l  and with lgradul-l, the two relevant time scales. 

Consider now the steady state that may be expected when energy loss to the 
turbulent motion preventis further intensification of the wave-motion. If the 
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action of the turbulence on the waves is equivalent to that of an eddy viscosity 
vT(x), each Fourier component has its energy reduced by a factor of 

(Townsend 1965). For components near their accumulation level, wind-shear 
and eddy viscosity vary slowly with height compared with the local frequency, 
w = ZV-p.kz, and 

(6.6) 
VT k3w4 k 3 4  

lZ * d z  = 1 v  s (J w4(w2, - w ) T p '  

It follows that the component is absorbed almost entirely during its passage 
through a shallow layer centred around the level where QuT k3w3p.  kw3)-1 = 1, 
and that the wave-motion at  height x is derived almost entirely from components 
for which 

The magnitude of ( (ac / : l a~ )~ )  is found by integrating G(k) over all values of k 
satisfying this condition. Since the power spectrum varies as m'-3 near the 
accumulation line, where m' = w/lV - pxl, the integration with respect to m' 
can be done neglecting variations of other factors and then 

the integration being along the accumulation line. Comparison with (5.7) shows 
that the weighting factor of P,,(k) in the integral differs only by a factor of 
[ + v T ( p .  k)2]-Qt-1, and SO 

where &(a) is the function plotted in figure 8 and ((3. k), is an average value along 
the accumulation line. Since (p . k) = PZ' sin (6- E ) ,  we require an effective value 
of I'. If w1 Lo/( V sine) is small, the whole range of I' is involved and 

1; z +wl/(Vsine). 

If w1 Lo/( V sin E )  is large, contributions for large l'L, are negligible and so ZA M Lcl. 
Roughly, then, 

(P.k), = [l- exp( -L*)]lsin(cY-e). 2 V s i n ~  Lo (6.9) 

If the production of turbulence prevents the occurrence of values of ( ( a c / : / a ~ ) ~ )  
larger than one, (6.8) gives the eddy viscosity as 

11-2 
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The eddy viscosity can be used to calculate the rate of energy transfer to the 
turbulent motion. It is 

-- Fo(k)dk 

and again the integrand varies as m'-3 near the accumulation line. 
with respect to m', 

in which the integrand differs from that of (5.4) only by a factor of 

( 9vT( p . k)2)-i w ~ ' t - ~ .  

Then 

(6.11) 

Integrating 

(6.12) 

(6.13) 

where P(a) is the function plotted in figure 7 and (p . k)P is another average along 
the accumulation line. Substituting for the eddy viscosity from (6.10), 

(6.14) 

The length and velocity scales of the turbulent motion can be estimated from 
assuming the two average values of p . k to be nearly the same. 

the well-known relations, 
vT = uoLu and F = ug/Lu, 

where uO is nearly the root-mean-square fluctuation of velocity and L, is nearly 
the integral scale. In  terms of B and v,, 

uo = (FvT)i and L, = v$&. (6.15) 

In  these expressions, E is the rate of transfer of energy to heat through the turbu- 
lent transfer process and may be rather less than the transfer from the wave- 
motion. The approximations used are such that the difference may be ignored. 

7. Numerical estimates of wave-motion and turbulence 
Broadly, the several estimates all show that maximum wave-amplitude occurs 

either just outside the boundary layer (in reflexion conditions with p . V negative) 
or near a height of V//3 (in accumulation conditions with a. V positive). The mag- 
nitudes depend on the nature of the boundary layer, on the Brunt-Vaisala 
frequency and on the elapsed time expressed as a multipIe of p-'. The parameters 
used to describe the disturbance produced by the boundary layer, V ,  Lo, wo 
and T ~ ,  have not been measured in the atmosphere and estimates of their values 
depend on measurements in constant-density layers in the laboratory. Brad- 
shaw (1966) has analysed measurements of the irrotational motion just outside 
the layer and finds that the convection velocity is approximately V = 2.5u*, 
where u* is the friction velocity. It is likely that the auto-correlation time-scale 
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T~ is near Lo/u* and that the root-mean-square displacement velocity is near 
hug, i.e. wo/ V = 0.2. With rather more uncertainty, extrapolation to the atmo- 
spheric boundary layer indicates that the values, 

wo = 40cmsec-l, V = 200cmse~-~, Lo = Zoom, 

r1 = iLo/wo = 250sec, 

may be appropriate to a friction velocity of 80cmsec-’, or a wind of around 
13 m see-1. Assuming these values for wo, V and Lo, and a characteristic frequency 
of w1 = see-l, wave-amplitudes and parameters of wave-produced turbu- 
lence have been calculated for the heights of nearly maximum disturbance and, 
since the value of T~ is only an informed guess, for two values of W ~ T ~ .  They are 
tabulated first as functions of the non-dimensional time pt, and then for pt = 20, 
as for a wind-shear of 2 m see-l km-1 and an elapsed time of lo* sec or about 
3 h. Particle velocities can be found by multiplying the vertical displacements by 
wl, i.e. velocities in ern see-l are numerically equal to the vertical displacements in 
metres. The velocities are almost vertical for refiexion components and almost 
horizontal for accumulation components. 

w171 = 1 OIT1 = 2 
v 7----h- 

r-----h-- 7 

8 (5”>l(Pt) (5”* (C”>l(Pt) (5”h 
(“1 (4 (m2) (m) 

0 520 102 700 118 
45 410 90 540 104 
90 190 62 250 71 

135 40 28 55 33 
1 SO - 

Note. Calculated from equation (4.13) for wo = 40cnisec-1, 
V = 200 cm see-l, Lo = 200 m and the two indicated vaIues of 
0 ~ 7 ~ .  The values are for small values of Pz/V where maximum 
intensity occurs. The columns of (cz)* are for an elapsed time of 
lo4 sec or roughly 3 h. 

TABLE 1. Vertical displacements from reflexion components. 

- - - 

(“1 (4 (m) (m) (m) 
5.8 4.4 7.6 0.0% 1 0.002 8.8 15 0.002 0.004 

45 9.4 16 1.5 0.3 16.5 28 2.5 0.50 
90 10.0 17 2.26 0.45 16.0 27 3-3 0.67 

135 10.3 18 2.8 0.56 18 31 4-0 0.80 
174.2 30 40 7.4 1.48 49 84 10.5 2.1 

Note. Ca.lculated from equations (5.3) and (5.8) for w o  = 40 cm see-l, V = 200 cm sec-1 

((Zyy Lo = 200 m and the two indicated values of 0 ~ 7 ~ .  The columns of (C2)* and 

are for an elapsed time of lo4 see or roughly 3 h. 
TABLE 2. Vertical displacements and gradients from accumulation components for 

pz/v = 1. 
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(") (4 (4 
5.8 0.038 0.2 0.63 3 0.001 0.8 0.94 8.5 

45 0.09 2.9 4.0 7,3 0.28 8.1 6.9 11.7 
90 0.10 4.8 4.6 7.8 0.36 10.4 7.8 13.3 

135 0.16 8.1 6.0 13.5 0.54 16-4 9.7 16.9 
174.2 2.8 180 26.7 67 8.5 370 42 88 

Note. Calculated from equations (6.10), (6.14) and (6.15) for wo = 40 ern sec-l, 
V = 200 ern sec-l, Lo = 200 m and the two indicated values of w l r l .  Values of 2, vT and 
uo are in c.g.s. units and of L, in metres. They refer to the steady state attained after the 
wave-motion has become unstable. 

TABLE 3. Characteristics of turbulence generated by wave-accumulation for Pz/V = 1. 

I I 
I 

k-plane 

I 
I 

k-plane 

FIGURE 9. General appearance of wave-groups caused by the reflexion process (a )  and by 
the accuniulation process ( b ) .  The dotted regions in the wave-number plane indicate the 
dominant wave-numbers, and the lines of the wave-groups indicate crests and troughs of 
the wave-motion. 



Internal waves in a stratified atmosphere 167 

From the values in tables 1 and 2, vertical displacements of over 50m are 
expected after an elapsed time of 3 h, whatever the angle 6 between the directions 
of the convection velocity and the wind-shear. (The difference between the in- 
tensity of reflected waves a t  small non-dimensional heights and a t  unit non- 
dimensional height is not large.) For most relative directions, reflexion compo- 
nents contribute most to the vertical displacements and the wave-pattern at any 
height is made up of wave-numbers near the reflexion line, i.e. its elements are 
wave-groups elongated in the direction of the relative wind, V - Pz, and with an 
average wave-number of roughly q ( V -  Px)/lV- f3zI2. For 6 near 180", i.e. 
wind decreasing with height, the accumulation components are dominant and the 
elementary wave-groups are elongated still in the direction of the relative wind 
but with wave-number a t  right-angles to the wind-direction and of magnitude 
near &,/V. The form of the wave-groups is sketched in figure 9. 

Instability of the wave-motion and local production of turbulence requires the 
attainment of values of (a</&)2 near 1, and table 2 shows that this is likely within 
a period of hours only if 6 exceeds 90". With a wind-shear of 0.002sec-l, the 
turbulence is likely t o  be rather weak with an energy dissipation of less than 
2 em2 s ~ c - ~  and velocity fluctuations less than 20 ern see-l. The tabulated values 
are sensitive to the values assumed for wo/V and for w171, but the calculations 
make it hard to believe that the energy-dissipation can exceed 20 em2 sec-3 and 
the R.M.S. velocity fluctuation 50 em sec-l, remembering that in practice con- 
vection velocity is not defined precisely enough to assume effective values of 
sin 6 less than 0- 1.  However, the possibility remains that, since the calculated 
figures are spatial averages, a high degree of inhomogeneity in the distribution 
of turbulent flow might lead to much higher local values. In  view of the highly 
stable nature of the flow, some inhomogeneity in the distribution of turbulent 
regions is to be expected. The predicted eddy viscosities are around 5 x 104 em2 
see-l for the largest value of w171 and are far from being negligible, while the in- 
tegral scales are of the right order of magnitude for clear-air turbulence. 

8. Momentum and energy transfer from the boundary layer 

The calculation of wave-intensities starts with specified vertical displacements 
just outside the boundary layer which is assumed capable of maintaining the 
necessary flux of momentum and energy by the waves. Whether radiated fluxes 
affect the motion in the boundary layer depends on their magnitudes compared 
with the Reynolds stresses and rates of energy production in a non-radiating 
layer. To the wave-packet approximation, the flux of energy leaving the layer by 
radiation is 

W = k-l( k. V)2 (4 - 12 V2)iFo( k) dk . (8.1) s 
(equation 2.14) and, substituting the special form for lio(k), 
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while, for large values of w1 Lo/ V ,  

If the rate of energy radiation is comparable with the total rate of production of 
turbulent energy in the boundary layer, it  is certain that the turbulent flow will 
differ from that in an ordinary layer in a neutral environment. Excluding the 
equilibrium, constant-stress, layer where production and dissipation of turbu- 
lent energy are nearly equal, the total rate of energy production is 

since wi appears as a measure of the Reynolds stress and V as a measure of the 
variation of mean velocity. Both wo and V are proportional to the friction velocity. 
The persistence time 71 is characteristic of the turbulent motion and is of order 
L,/wo, i.e. W ~ ~ ~ / L ,  N" 1. Then equation (8.3) shows that for small values of 

indicating that the proportion of energy lost by radiation varies as (W,L,,/V)~ 
and is negligible if the scale Lo is small compared with V/w,. The scale is compar- 
able with the thickness of the layer, so the boundary-layer motion is almost un- 
affected by the radiation if its thickness is substantially less than V / q .  

For large values of w l L o / V ,  equation (8.4) shows that the energy ratio is 

and, if the motion in the layer remains unaffected by the radiation, the ratio 
increases linearly with w1 Lo/ V ,  i.e. with the layer thickness. Since all the energy 
radiated derives from turbulenk energy produced in the layer, it  is impossible 
for the ratio to exceed one and the turbulent motion must be completely changed 
if the layer thickness is to be large compared with V/wl. The most likely change is 
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for T~ to become very small compared with Lo/V ,  equivalent to dominance of 
wave-like motions which are not really distinguishable from the radiated waves. 
If we regard the layer thickness as the thickness of characteristically turbulent 
flow, we must conclude that the maximum possible thickness is about V7/w1. 

The values for Lo and V used in the previous section were intended to be repre- 
sentative of the earth’s boundary layer, and they give wlL,/V = 1. While the 
choice of V is only an informed guess, it is very likely that actual values of 
w1 Lo/ V are not far removed from unity and so that the thickness of the layer is 
usually near the upper limit set by radiation loss of energy. The usual treatment 
of the boundary layer without buoyancy flux assumes a distribution of eddy 
viscosity with height and finds a time-independent velocity distribution similar 
to the Ekman spiral (see, for example, Ellison 1956). The vertical extent is con- 
trolled by cancellation of the waves of absolute momentum diffusing upwards 
from the rotating earth, and the thickness is a multiple of u*/f (u* friction velo- 
city, f Coriolis parameter). The present calculations seem to show that energy 
loss by radiation may exert at least an equal influence on the boundary layer. 

The radiated waves carry momentum as well as energy, and a sinusoidal wave 
of amplitude a and local frequency w has a vertical flux of momentum in the Ox 
direction of 

@/kw(w2,- d)*aa* ,  

independent of height but changing sign on reflexion. At  low levels, the initial 
wave ‘Reynolds stress ’ before reflected waves return is 

~ ~ ( 0 )  = k1Z2 V(W: - 1’ V2)*&(k) dk 

(8.8) 

J 
= wv-1. 

After a long time, the average contribution of reflexion components (k.P < 0 )  
will be one-half the initial contribution and the low-level stress will be between 
3 W /  V and W /  V .  Notice that, if energy-loss by radiation is comparable with total 
energy production in the turbulent layer, the wave Reynolds stress is comparable 
with the turbulent stresses and so the top of the turbulent layer is where turbu- 
lent stresses are converted to wave stresses. Reflexion and accumulation both 
prevent the upward transmission of shear stress, and the wave stress becomes 
small at  heights much larger than VIP. The stress gradient is of order Pw$/V if 
w1 Lo/ V is near one, and could produce an additional component of wind whose 
ratio to V is about /3wi/(f V2) .  To some extent, the boundary layer may be con- 
sidered to have a total thickness of about VIP, in which total stress is appreciable 
and wind velocity differs from the geostrophic values. 

9. Concluding remarks 
Although the results can be applied to other examples of boundary-layer flow 

with a stably-stratified environment, the emphasis has been on the atmospheric 
boundary layer and its interaction with the rest of the troposphere in its normal 
state of stable stratification. The principal conclusions are: 



170 A .  A .  Townsend 

(i) Internal waves radiated from the earth’s boundary layer can lead to vertical 
displacements of 50m or more after a growth period of a few hours. Seen from 
the ground, the wave-patterns travel at the convection velocity, with about 
four-fifths of the wind-speed at  the top of the layer, and, if the vertical displace- 
ments cause cloud formation, the wave-clouds travel at  this velocity. If wind 
increases with height, the typical wave-groups are elongated perpendicular to 
the wave-crests. If it decreases with height, they are elongated along the wave- 
crests and the group should contain no more than two crests in all. 

(ii) Patches of clear-air turbulence are likely t o  form if wind decreases with 
height, and their intensity will be greatest where the difference between the wind 
velocity and the convection velocity of the disturbances is least. Estimates of the 
intensity and scale suggest the velocity fluctuations are not likely to exceed 
50 cm sec-l and that the depth of the patches may be about 50 m. Their presence 
could lead to effective eddy transfer coefficients in the range 104-105 em2 sec-l. 

(iii) For a particular boundary layer, the mean square velocities and dis- 
placements are proportional to the ratio of vertical wind gradient t o  the Brunt- 
Vaisala frequency, i.e. inversely to the square-root of the Richardson 
number. 

(iv) Radiation fluxes of energy and momentum from the boundary layer are 
sufficient to modify its structure considerably, and it is possible that, in neutral 
conditions, the earth’s boundary layer is nearly as thick as is dynamically possible 
in the stably-stratified environment. In  other words, the radiation of internal 
waves restricts the layer thickness and the effects are comparable with those of 
the Coriolis forces. 

Wind-driven boundary layers below the ocean surface also have a stable en- 
vironment and most of the considerations of energy and momentum loss byradia- 
tion apply to them. In the atmospheric layer, the thickness set by rotation is 
close t o  the limit set by radiation because the ratio of characteristic frequency to 
Coriolis parameter is nearly 100 (the comparatively large number arises from the 
large ratio of the effective thickness of a turbulent Ekman layer t o  the ‘scale’ 
u*/f). It may be a coincidence that the characteristic frequency in the ocean 
below the surface layer is about sec-I, nearly the same value as in the atmo- 
sphere, but it suggests that the two layers are dynamically similar even allow- 
ing for the effects of radiation. A sample of two is far too small for statistical 
analysis, but it is interesting to speculate whether the general circulation of a 
fluid on a rotating earth necessarily leads to a stratification determined by the 
rotation rate. 

With reference to the calculations themselves, it should be pointed out that 
the earlier work on a stratified atmosphere without wind-shear showed that most 
of the wave-energy appears in the form of wave-components with frequency 
slightly less than the characteristic frequency of the lower of the two layers of the 
model, i.e. of the ‘troposphere’. The packet approximation cannot be used for 
these components, and the results are peculiar to the two-layer atmosphere with- 
out appreciable wind-shear. That comparable intensities are found is probably 
due to the rate of radiation of wave-energy being given by the packet approxima- 
tion to an order of magnitude even for the two-layer atmosphere. 



Internal waves in a stratijed atmosphere 171 

REFERENCES 

BRADSHAW, P. 1967 J .  Fluid Mech. 27, 209. 
BOOKER, J. R.  & BRETHERTON, F. P. 1967 J .  Fluid Mech. 27,513. 
BRETHERTON, F. P. 1966 Quart. J .  Roy. Met. SOC. 92, 466. 
ELLISON, T. H. 

Davies. 
LIGHTHILL, M. J. 1965 Inaugural Lecture, Imperial College, London. 
TOWNSEND, A. A. 1965 J .  Fluid Mech. 22, 241. 
TOWNSEND, A. A. 1966 J .  Fluid Mech. 24, 307. 

1956 Surveys in Mechanics, p. 400. Eds. G. K. Batchelor and R. M. 


